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Analytical Estimation of Carrier Multipath Bias 
on CPS Position Measurements 

C. Michael Volk' 
Joint Institute for Laboratory Astrophysics 
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and 

J U M I  Levine** 
Time and Frequency Division 
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Boulder, Colorado 80303 

Multipath is one of the factors degrading the accuracy of position measurements 
obtained with the Global Positioning System (GPS). We investigate the effects of mul- 
tipath on the carrier phase measurement and the resulting bias on relative GPS posi- 
tions for observation times longer than several hours. 

A short-range GPS network was surveyed with day-long observation sessions. 
The data display obvious multipath signatures and the position results indicate the 
presence of site-specific errors at the level of several millimeters. This led us to sus- 
pect multipath bias and motivated the quantitative estimation presented here. We first 
model the phase error due to multipath from a single plane reflector in terms of satel- 
lite-reflector geometry. The effect of this error on position is then derived by perform- 
ing a simplified least squares adjustment under the assumption of uniform satellite 
distribution. After several steps of approximations and manipulations we arrive at sim- 
ple expressions for the bias in terms of general receiver-reflector geometry and a few 
other variables. The results are generalized to dual frequency observations that are 
commonly used for high accuracy observations. 

The model is then employed to estimate upper limits of the multipath bias for gen- 
eral receiver environments. We consider bias due to multipath from the flat ground, 
from nearby objects, and from a tilted ground, obtaining formulae for each situation 
that depend only on reflector characteristics and geometry. Finally, these results are 
applied to the GPS experiment. Limitations of the applicability due to model assump- 
tions and unmodelled effects are discussed. The two stations thought to be most 
affected by multipath in the experiment are examined. We find that the multipath 
phase error as inferred from the observations can. give rise only to vertical biases 
smaller than 2 mm and horizontal biases smaller than 1 mm. It is thus concluded that 
bias due to multipath-induced carrier phase error is effectively reduced by averaging if 
observation intervals are at least several hours long and som. basic precautions are 
taken regarding the receiver environment. 

Keywords: GPS geodesy; GPS measurements; multipath bias 

* Current affiliation: Cooperative Institute for Research in Environmental Sciences and Department of 

**Fellow, Joint Institute for Laboratory Astrophysics, University of Colorado, Boulder, CO 80309. 
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CHAPTER 1 

INTRODUCTION 

“Multipath” has long been recognized as a significant error source in high accu- 
racy applications of the Navigation Satellite Timing and Ranging (NAVSTAR) Global 
Positioning System (GPS). It occurs when a satellite signal is reflected from objects in 
the vicinity of the receiver causing multiple arrivals of the same signal. Interference of 
these arrivals corrupts the “true” (direct) signal with time-dependent signatures. Many 
studies on multipath have focused on how to detect and reduce it (e.g., [ 11). Consider- 
able effort has been undertaken to design antennas and backplane configurations that 
minimize the sensitivity of the receiver’s antenna in the direction of reflectors at low 
elevation angles [ 2,3]. 

Because multipath signatures on the carrier phase tend to oscillate with periods 
shorter than 10 to 20 min, it is clear that their effect is most serious for GPS applica- 
tions with short observing sessions and for kinematic applications. Several authors 
have stated that observations over several hours are likely to average out most of the 
effect on relative positioning [4,5,6]. 

This work developed out of a continuous discussion about how big the net bias on 
relative positions due to multipath could be in a recent GPS experiment using observa- 
tion sessions of 23 h. The experiment and some results hinting at multipath problems 
are discussed later in this chapter; preceding is an (ultra-)brief introduction to GPS. 
The main part of this report is of a rather theoretical nature: In Chapter 2 we develop 
the mathematical frame and tools. These are used in the third chapter to estimate the 
multipath-induced bias for several simple reflector-receiver geometries. Chapter 4 
attempts to quantify the analysis and to apply the results to two receiver sites of the 
GPS experiment mentioned above. Conclusions are drawn in the final fifth chapter. 
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1.1 Brief Introduction to GPS 

GPF satellites orbiting at 20,000 km altitude transmit two carrier radio signals L1 
and L2 at frequencies of about 1.23 and 1.58 GHz (wavelengths of about 19 and 
24cm). These are modulated with lower frequency codes, most importantly the 
pseudo-random P-code at 10.23 MHz. The codes are used to simultaneously measure 
the time delay of signals from several satellites at the receiver (“pseudorange measure- 
ment”). An instantaneous receiver position with meter accuracy is thus obtained, e.g., 
for navigational applications (the original purpose of GPS). Even before the system 
was operational, the potential use of the carrier signals for precise relative positioning 
was realized and several methods were suggested on how to extract vector baselines at 
centimeter-level accuracy [7]. 

In principle, the phase from at least two satellites (usually more than four) is mea- 
sured at two (or more) receivers simultaneously, thus eliminating systematic receiver 
and satellite clock offsets by common mode cancellation. The simultaneous phases of 
each pair of receivers and each pair of satellites are substracted from each other to 
arrive at “double difference” observations. The double differenced satellite ranges are 
ambiguous by an unknown number of carrier wavelengths and left with errors due to 
differential propagation delays. The latter are corrected by various methods. Since the 
ionosphere is dispersive in the radio band, dual frequency observations (L1 and L2) 
allow elimination of major ionospheric effects. The ionosphere corrected range is an 
appropriate linear combination of L1 and L2 called L3. The non-dispersive atmo- 
spheric delay (mainly due to the tropospherc) must be corrected by modelling using 
surface measurements. This method works well for the dry air which is approximately 
in hydrostatic equilibrium, but is less satisfactory for the water vapor contribution. 
Often water vapor radiometers are used to measure the wet delay; sometimes stochas- 
tic estimation techniques are invoked. There is some argument as to which method 
produces better results [8]. 

If the differenced satellite ranges are tracked while maintaining lock with the sig- 
nal, the baseline vector can be obtained provided that the satellite orbits and the initial 
cycle ambiguities (or “phase biases”) are known. Nowadays the orbits are determined 
by continuously tracking the satellites from a continental-sized or even global network 
of “fiducial stations” whose coordinates are well known from other techniques (VLBI 
or SLR). The phase ambiguities and relative station positions are then solved for using 
a least-squares adjustment of all observations starting from a priori coordinates that 
are usually known to within a few centimeters from pseudorange measurements. For 
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baselines shorter than 100 km most of the cycle ambiguities can usually be constrained 
to their integer values. In a repeated adjustment the known ambiguities are constants 
and only the station coordinates are estimated (usually relative to one fixed station). It 
is actually not required that the ambiguities be fixed to integers since the best fitting 
real numbers determined by the least squares adjustment are sufficient to yield mean- 
ingful position results. However, the precision of the measurement increases if the 
biases can be fixed. A comprehensive discussion of the fundamentals of GPS has been 
given by Rocken [9]. 

Most errors affecting GPS relative positioning are proportional to the baseline 
length, e.g., orbit errors, atmospheric path delay errors, errors in the absolute position 
of the fixed station (e.g., [lo]). Besides receiver setup errors, the dominant length- 
independent error sources are multipath and two even more complex phenomena, 
antenna phase center variations and imaging [ 113. The latter of these two effects is 
related to multipath and is difficult to distinguish from it. Phase center variations and 
imaging will be ignored in this work, yet it ought to be kept in mind that they may be 
non-negligible. 

1.2 The GPS Experiment “EDM” 

A GPS experiment titled “EDM” was conducted in cooperation with the Univer- 
sity NAVSTAR Consortium (UNAVCO), Boulder, in March 1993. The objective was 
to compare distances measured by GPS and the JILA three-wavelength electromag- 
netic distance-measuring (EDM) instrument [12]. We had been testing the latter sys- 
tem during several months in a two-wavelength mode over a baseline between the top 
of a mesa west of the NIST facilities in Boulder and the base of a meteorological tower 
operated by NOAA near Erie, Colorado. The EDM yielded a precision of better than 
2 mm over this distance of 24 km, i.e., better than 0.1 ppm. 

The GPS data were acquired at a sampling rate of 15 seconds during 3 daily ses- 
sions each lasting 23 h starting at GPS time 1790 on March 19, 20, and 21, respec- 
tively. Four sites were occupied with Trimble 4000 SST dual-frequency receivers: the 
two benchmarks at the NIST mesa (“nist”) and at the tower base at Erie (“eril”) used 
for the EDM tests; another benchmark on NOAA land some 200 m from eril (“eri2”); 
and a benchmark on top of the UNAVCO building in Boulder (“rfcr”). A fifth receiver 
at Platteville, Colorado (“plat”) is operated permanently by UNAVCO and served as a 
reference position. The receivers at rfcr and plat were hard-mounted, whereas nist, 
eril, and en2 were subject to a daily setup error. 
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The data were then processed with the Bernese 3.3 software that uses double dif- 

ference observables in one least squares adjustment in the way described above. In 
general, more than 95 percent of the ambiguities for any given baseline and day could 
be fixed to their integer values. Initially, baselines from nist to eri 1, eri2, and rfcr were 
included in a series of processing runs under varying processing parameters. The 
results showed good agreement between the distances on the first and third day but a 
consistent 3 to 5 mm increase in the nist-to-eri baselines for the second day mainly due 
to an apparent offset of nist to the west. In a second series of runs we processed base- 
lines from rfcr to all other stations, including plat, in order to discriminate between 
potential error sources. Surprisingly, the longest baseline of 47 km from rfcr to plat 
(“platrfcr”) showed the best horizontal repeatability over the three days while horizon- 
tal scatter in the distance from rfcr to nist (“nistrfcr”) was biggest, up to 4 mm peak-to- 
peak. Consequently, the main contributing error sources must be length-independent. 
In fact, baseline nistrfcr is so short (5.5 km) that scale errors should be negligible alto- 
gether. 

In order to investigate if the unexpected high scatter in the horizontal components 
of nistrfcr was likely to be due to setup errors at nist, we split up the data into three 
(approximately) 8-h sessions for each day. Figure 1.1 shows the “time series” of the 
resulting nine sessions for four processing runs in which the minimum satellite eleva- 
tion above the horizon (“h,,,h”) was varied from 20’ to 35O. It can be seen that: (i) the 
scatter in nistrfcr is as big or bigger as in platrfcr, (ii) scatter within one day is not 
smaller than scatter between days (which would have been expected for setup errors); 
and (iii) that the minimum satellite elevation has quite an influence on the result, in 
particular for baseline nistrfcr. 

We thus arrive at the conclusion that site-specific problems giving rise to system- 
atic bias of the position are likely to be present at nist. Multipath is one of the prime 
candidates for such problems. While these results certainly motivated the discussion 
that led to this work, they should by no means be considered as proof for the “multi- 
path case”. 

Several ambiguous and unexplained factors not mentioned so far remain: 
The site most suffering from multipath is clearly eril. As will be discussed in Chap- 
ter 4, this benchmark is surrounded by nearby trailers and the noise in the post-fit 
double difference residuals is about twice that of all other baselines. However, this 
is not apparent in the position results. In fact, the two Erie sites consistently yield 
results very similar to each other in all the processing runs and there is no evidence 
for site-dependent bias at eril. 
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Figure 1.1. Horizontal components of the baselines nistrfcr and platrfcr in four pro- 
cessing runs with varying minimum satellite elevation hmh. Sessions are approxi- 
mately 8 h. The setup at nist was changed daily, Le., after sessions 3 and 6, but 
remained unchanged at rfcr and plat. 
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Judging from the noise in the double difference post-fit residuals, nist is no worse 
than any of the other sites. 
There were, however, mysterious receiver outages reoccurring daily at nist around 

0:OO GPS time. The resulting gaps of up to one hour in the data caused unexplained 
problems in the processing. Special data editing during preprocessing was required 
to arrive at meaningful results at all. 

No attempt is made in this work to further investigate any of these points. Instead 
of trying to find out just what the problem at nist is, we will content ourselves with 
estimating how much of a problem multipath could be in the given environment. 

1.3 Multipath Signatures in GPS Data 

Phase multipath is wlatively easy to detect if dual frequency observations are 
available. Other noise sources that can leave similar signatures in the data are highly 
time-variable ionosphere noise, tropospheric delay errors, and different sorts of geo- 
memc errors (satellite and receiver positions, clock errors). Ionospheric delay is elimi- 
nated in the ionosphere-free linear combination L3 (section 1.1) while geometric 
errors and tropospheric effects are common to both frequencies and thus cancelled by 
forming the “geometry-free” linear combination L4 = L1 - L2. L4 is simply the differ- 
ential range of L1 and L2 that is due to the ionosphere and other effects not common to 
both frequencies like multipath. 

As pointed out by Rocken [9], any correlation between L3 and L4 post-fit residu- 
als must be due to measurement noise (3 mm) or multipath and related effects (imag- 
ing, phase center variations). Hence, a simple inspection by eye will usually reveal 
multipath signatures. An example from the baseline nistrfcr is given in figure 1.2. 
Another indicator for multipath is noise signatures that repeat from day to day. 
Because the satellite-receiver geometry repeats daily (shifted by 4 min), the multipath 
does, too. This was evident in nearly all of the experimental data from the “EDM’ 
campaign. Indeed, we made use of the repetitive nature of multipath during data edit- 
ing to distinguish cycle slips (which would not repeat daily) from high frequency high 
amplitude multipath noise. This was especially helpful for baselines including en 1 
where the program in automatic mode frequently mistook “jumps” in the residuals 
caused by multipath as cycle slips. 
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Figure 1.2. L3 (upper plot) and LA (lower plot) postfit double-difference residuals 
of the baseline nistrfcr. Any correlation between the two plots is due to multipath. 
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CHAPTER 2 

GENERAL APPROACH 

The goal of this chapter is to express the bias of GPS derived positions resulting 
from multipath in terms of receiver-reflector geometry and a few other variables. We 
start out by modelling the multipath error phase in terms of geometry. In a second step 
we derive the position bias due to this error phase. The analytical expressjons thus 
found will then be approximated in order to simplify the calculations for a given envi- 
ronment. The discussion will be restricted to a single planar reflector. 

2.1 The Multipath Error Phase 

Consider a signal from a satellite that arrives at a receiver R via two different 
paths: the direct path and the multipath due to reflection from a nearby planar object. 
This causes the arrival of two signals at the receiver which are out of phase because 
the two paths have different lengths. We start out by calculating the pathlength differ- 
ence between the two paths. For a plane reflector at a perpendicular distance d from 
the receiver the length of the multipath is equivalent to the length of a path from the 
satellite to a (stationary) image receiver R' an equal perpendicular distance behind the 
reflecting surface. The general geometry and variables used in the following are intro- 
duced in figure 2.1. 

As s and s' are essentially parallel, the pathlength difference AS is simply the 
length of R R  = 2dn projected on s': 

where 5 is the unit vector in direction of s. If h is the wavelength of the signal, then the 
resulting phase difference between the direct and the multipath signal is 
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n: 

S: 

d: 

& =  
h: 
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vector RS 
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above reflector plane 

in arbitrary coordinate system: 
h: elevation angle above the 

a: azimuth angle from x-axis 
x-y plane 

Figure 2.1. General geometry and variable definitions used in this chapter. 

The two signals arriving at the receiver are 

Sdirect = A,sin(ot) and Smdti = A2sin(ot+A$), 

o = 27t.cfi being the angular frequency of the satellite signal. They combine at the 
receiver phase center yielding the total signal: 

S m  = Alsin(ot) + A&(ot+A$). (2.3) 

This can be expressed as Sml = Atdd sin(ot + M), where 

Atota, = JAf + A: + 2 A , A 2 ~ o ~ A $  

and 

A2sinA$ 
A, +APcosA@' tanM = 

(2.4) 

With the relative multipath signal amplitude A 
expression for the error phase due to multipath, 

AJA1 I 1 we thus arrive at an 
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4xd 

A-' + cos( Fn. S) 
M has the following features: 

For the special case A = 1 the right hand side of eq (2.5) becomes tan(A@/2) and 
thus M = A/2. Because of equal amplitudes, signals Sdirecc and Smulti are indistin- 
guishable resulting in a phase of Su equal to the average of their phases, ot+A@/2. 
This case is obviously of no practical relevance. 

For A < 1 M is amplitude limited: IMI I d 2  or smaller than a quarter of a cycle. The 
maximum amplitude of M is determined exclusively by A. 

As the satellite moves, M undergoes cyclic variations. The periodicity of M is the 
same as that of the sine in the numerator of eq (2.6), Le., it oscillates with an angu- 
lar frequency -A@. 

It follows from eq (2.2) that the multipath oscillation Frequency is proportional to 
d/k and to 

d 
dt 

d d d --(ne S) = -sinh' = cosh' -h', 
dt dt dt 

i.e., it increases with the distance to the reflector, decreases for longer wavelengths, 
and increases with the rate of change and the cosine of the satellite elevation angle 
h' above the reflector plane. 

A derivation similar to the preceding one has been given by Georgiadou and 
Kleusberg [5 ] .  They obtain an oscillation period of 3.2 min for h' = 45O, d = 10 m, and 
an average rate of change of the satellite elevation angle. This number is within the 
typical range of oscillation periods evident in experimental GPS data. 

Figure 2.2 shows M as a function of h' for A + 1 and for A = 0.5. In the case 
A = 1 M would simply be wrapped, Le., instead of the jumps of -1/2 cycles visible in 
figure 2.la, the sections would be appended one to the next to give a smooth function. 
For small A, M becomes more harmonic. Changing h or d would have no influence on 
the shape of M, but simply change the scale on the h' axis. 



(a) A +l 

-0.1 

-0.2 :I I . 
M [Cycles] 

1 

I 4  

I 

1 
(b) A = 0.5 

I- * h' 

Figure 2.2. Multipath error phase M versus satellite angle above the reflector plane 
h for relative multipath amplitudes (a) A + 1 and (b) A = 0.5. In both cases the per- 
pendicular distance from receiver to reflector d = 1 m and the wavelength h = 20 cm. 
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2.2 Position Bias Resulting from Phase Error 

2.2.1 The Least Squares Adjustment 

To be able to calculate how an error in the phase affects the GPS position result, 
we must understand how GPS infers position from the observed phase. The following 
discussion of the least squares adjustment is a simplified version of the one given by 
Rocken [9]. A rigorous general treatment of least squares solutions can be found for 
example in Vanicek and Krakiwsy [13]. We will use the following variables which 
each correspond to an observation: 

s: is the true vector from the receiver to a satellite. 

so: 

$(s): in cycles is the modeled phase expected at the receiver due to the true receiver 

is the vector from an a priori receiver position to the satellite. 

and satellite positions. 

$’: in cycles is the actual observed phase which is different from the modelled phase 
because of unmodelled effects. 

v = 0 - 0’: is called the residual. 

r = s - so: is a small correction to the a priori receiver position to be found in the adjust- 
ment; it is constant for all observations. 

We assume here that the only unknowns to be estimated in the adjustment are the 
three components of the receiver position correction. This is actually the case in prac- 
tice if the phase ambiguities have been fixed to integer values, precise orbits are used, 
and no other parameters (e.g., tropospheric delay) are estimated. For each observation 
there is a set of known model parameters; in the simplified treatment given here it con- 
sists only of s, and constants. Our phase model is simply geometrical neglecting all 
sorts of errors that would in reality have to be modeled: 

(2.7) 

To be able to solve for r we have to linearize eq (2.7). For a priori coordinates close 
enough to the true positions, r is very small and so 

A so s o .  r 
$(s)  z 1 + - h *  
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It is also 
$(s)  = $ l + v  

and thus 
A so so.  r " = X + n -  v (2.10) 

For % observations included in the adjustment there are II, equations (2.10) 
and only three unknowns. The number of observations, e.g., for a daily session in the 
"EDM" campaign, is on the order of 5000, leading to a highly overdetermined system 
of equations. In a least squares solution we solve for a correction to the a priori caordi- 
nates by requiring the sum of the squares of the residuals to be minimized. Omitting in 
the following the observation indices present for all variables except r, this require- 
ment is written as 

so . r 2 
z v 2  = z(:+f-$l) = minimum, 
obs obs 

(2.1 1) 

where the sum runs over all observations included in the adjustment. 
The minimum is found by differentiation: 

2 
$ 1 )  = 0 (2.12) 

obs obs 

(2.13) 

The term ( 6 ,  r) 6, can be expressed as So . r where So is the 3x3 matrix 

s = iOiiOj. (2.14) 
Oij 

Summarizing all the known terms in 

we arrive at 

(cSo).; = x b .  
obs obs 

(2.15) 

(2.16) 

So is a regular 3x3 matrix and we can finally solve for r: (2  1 



r = 1- ( x s 0 ) - ' .  x b .  
obs obs 

(2.17) 

Let us now examine the effect of an unmodelled error like multipath on r. The 
only term affected by the error is the observations. In our case, we simply have to add 
the error phase resulting in biased observations 6 = +' + M , where M = - denotes 
the multipath e m r  phase in cycles. The biased position correction is then 

M 
2n 

: = r + 6 r  = 1-(xS0)- ' .x(b--MS,) = r - l . ( ~ S o ) " . ~ M b o .  (2.18) 
obs obs obs obs 

We have thus deduced a general expression for the position bias due to multipath: 

(2.19) 

where M is given by eq (2.6). 

2.2.2 Parameterization for Analytical Treatment 

We now face the task of actually calculating 6r for a given receiver-reflector 
geometry. All terms of eq (2.19) have been parameterized except the summation over 
all observations. The direct approach would be to actually perform the summation for 
a specific GPS session. The matrix So is determined by the known satellite position for 
each observation; likewise M can be calculated from the satellite position for each 
observation. This approach would amount to a GPS simulation experiment in which 
many error sources are neglected. 

We are interested here in a generic solution that may not yield details applicable to 
a specific practical situation but give some insight to the nature of multipath bias and 
an order of magnitude estimate of its size. The approach taken is based on the assump- 
tion of a uniform satellite distribution throughout the observation session. This 
assumption is frequently made for the deduction of simple formulae for GPS errors 
and has been shown to yield results agreeing to within 50 percent with simulation 
experiments, even for the incomplete satellite test configuration of GPS prior to 1987 
[ 101. The validity of the assumption will be further discussed in Chapter 4. 

The assumption of uniform satellite distribution has to be further defined here: We 
assume that the satellite positions at the times of observations are evenly distributed in 
the observation region, defined as angular space covered by the satellites as seen from 
the receiver in question. In mathematical language this means that the vectors b 3 bo 
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belonging to the observations, expressed in spherical coordinates h (elevation angle) 
and a (azimuth angle) for any coordinate system centered on receiver R (or R),  are 
distributed in (h,a)-space with a constant density function c. 

For a sufficiently high density c we can then parametrize the sum over all observa- 
tions of any function f depending on 8 as integral over the observation region: 

x f  (8 (h, a) ) + c f (8 (h, a) ) cosh dh da . (2.20) J 
obs obs 

Consequently, eq (2.19) becomes: 

6r = 4 - [ Socosh e dh - d a r  - I M8,cosh. dh . da (2.21) 
obs multi 

where "multi" denotes the multipath region, i.e., the part of the observation region for 
which M is nonvanishing. 

Let us next calculate the 3x3 matrix 

J Socosh. dh da = B-' . 

Since the observation region is a cone about the vertical a 
obs 

i we ch se the z-axis of 
our coordinate system to be vertical and obtain (replacing 1, by 0 for convenience): 

2n 90" 

(2.22) 

where h,,,h is the minimum satellite elevation angle allowed in the adjustment and we 
assume that there are no obstructing objects within the observation region. 

With 
cosh cosa 
cosh sina 

' =  [ sinh ] (2.23) 

the azimuthal integral vanishes when its integrand is cosa, sina, and cosa sina. Hence, 
the only non-zero components are: 

90" 2n 

B;: = I cos3hdh e cos2ada 

hmin 0 

(2.24) 
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90" 2n 

B: = I cos3hdh - Isin2ada 

k i n  0 

(2.25) 

(2.26) 

90" 2r 

Bi i  = I sin2hcoshdh - I d a .  

k i n  0 

All three components are positive with a maximum value of 2/3x at h,,,,,, = 0. For a typ- 
ical elevation cutoff of h,,,,,, = 20°, B-l becomes the diagonal matrix 

B-' = r'" 0 1.06 O 0 O l  * (2.27) 

L 0 0 2.011 

Inverting B-'and inserting the result, B, into eq (2.21) yields the following analytical 
formula for the position bias: 

6r = 

2.3 Generic Calculation for Azimuthal Symmetry 

While we succeeded in finding a compact analytical expression for the position 
bias in terms of receiver-reflector geometry, we are now confronted with the problem 
that the integral in eq (2.28) is in general very difficult to calculate. The goal of this 
section is thus to develop a method to simplify eq (2.28) without restricting the appli- 
cability of the approach. 

2.3.1 Reducing to the Case of Azimuthal Symmetry 

In order to obtain eq (2.28) we already chose a coordinate system with vertical z- 

axis. In this coordinate system M from eq (2.6) becomes 

17 



M (h, a) = atan (2.29) 

and is thus generally dependent on both satellite elevation angle and azimuth in a com- 
plicated way. We are still free to rotate the coordinate system about the z-axis and can 
achieve n,, = 0 by choosing the y-axis to be parallel to the reflector surface. Figure 2.3 
shows phase contours of M in (h,a)-space for the case of a reflector surface tilted from 
the horizontal plane by 45'. Numerical integration of the two-dimensional integral in 
eq (2.28) can be very time consuming (depending on the size of the integration 
region). 

If n is in z-direction, i.e., the reflector parallel to the horizontal plane, M becomes 
independent of azimuth. We can reduce the problem to the case of azimuthal symme- 
try by evaluating the integral in eq (2.28) in a coordinate system in which the z-axis is 
in direction of n, i.e., by defining the horizontal plane as parallel to the reflector sur- 
face. In this primed coordinate system it is 

and thus eq (2.28) becomes 

sin ( F sin h' ) 
A-' + cos( F s i n h ' )  

M (h') = utun (2.30) 

The dependence of M on h', the satellite elevation above the reflector plane, has 
already been shown in figure 2.2. With this step we succeeded in separating the depen- 
dencies on azimuth and elevation angle in the integral of eq (2.28), which is now 

(2.3 1) 



1 7 5  

150 

1 2 5  

100 

7 5  

50 

2 5  

0 

Figure 2.3. Multipath error phase contours as function of satellite elevation h above 
the horizon and satellite azimuth a as seen from the receiver for a reflector surface 
tilted 45" with respect to the horizon. Y-axis (a = 90") is parallel to reflector surface. 
Perpendicular distance to reflector is d = 0.5 m, relative multipath amplitude A = 0.5, 
and wavelength h = 20 cm. Ragged features are an artifact of the plotting routine. 
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The components of m’ are given as x,y,z components in the primed coordinate 
system. As eq (2.28) is given in coordinates of the unprimed system, m’ has to be mul- 
tiplied by the appropriate rotation matrix T that transforms from the primed to the 
unprimed system. The position bias as defined in eq (2.28) is then 

6r = - X . B - T . m ’ .  (2.32) 

23.2 Numerical Integration 

The major task in evaluating eq (2.31) now will be to calculate the following inte- 
grals that axe part of the components of m’: 

J 
hmin 

cosh’sinh’dh’, (2.34) 1 . sin( sin h’) 

A-’ + cos( F s i n h ’ )  

where h,,,h and h,, are limits of the multipath region and have no geometrical mean- 
ing at this point. 

We first integrate both integrals numerically using the “mathematica” software. 
The results are shown in figure 2.4 in form of plots of I&,, and Ioz as functions of h,,,,, 
where the index “0” denotes that hhn = 0 (thus I(~,,,JI,,,~J = I,-,&,=) - I,,(hhn)). Not 
surprisingly, the integrals I&,,,,) oscillate with the same periodicity as M(h’) (com- 
pare with figure 2.2). From eq (2.30) one infers that M performs 2d/h cycles as h’ goes 
from 0 to 90’ (and sinh’ from 0 to 1). Hence, the average oscillation period in h’-space 
is h/(2d) - 90’; for d = 1 m it is approximately 9’. From now on, all terms concerning 
oscillation parameters (period, frequency, cycle, etc.) shall refer to the oscillations in 
h’. 

2.3.3 Approximating the Elevation Integrals 

Given the apparent sinusoidal features of M and the integrals by and b, it is 
tempting to simply approximate them by harmonic functions of appropriate amplitude 



Ioxy (a) 

0.015 - 

0.0125 - 

0.01 - 

0 .0075 * 

0.005 

0.0025 

1 

I o z  (b) 

0.0075 - 

0.005 - 

I 0.0025 

hmax 

hmax 

Figure 2.4. Numerical integration of the integrals (a) IhY = Ixy.(h,,,,,,=O) and 
(b) 1% = IxY(hmh=O) as functions of upper integration limit hmx. Relative multipath 
amplitude is A = 0.5, perpendicular distance to reflector d = 1 m, and .wavelength 
h = 20 cm. 
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and frequency to facilitate analytic expressions for the integrals. We will now investi- 
gate how far such approximations would yield meaningful results. 

M(h') is different from a sine function in two ways: Its shape within one period is 
not quite harmonic and its frequency in h'-space varies with h'. The latter is due to the 
sinys in eq (2.30). Let us look at the shape first and examine instead of M(h') the func- 
tion 

~ ( x )  = a m [  -1 sin x 1, 
A +cosx 

(2.35) 

whose periodicity in x is, of course, constant. It is easily seen that for A + 0, 
M(x) + Asinx. For larger A we may still attempt to apply this approximation; how- 
ever, the amplitude of the oscillation may be notably different from A. It can be shown 
that the maximum value of M for a given A is simply 

M,,, = usinA. (2.36) 

The shape of M(x) is shown in figure 2.5 for different A's together with the approxi- 
mation, M,,,,sinx. In practice, A is likely to be small. At any rate, the exact shape of M 
has no influence on the maximum amplitude of integrals I,, and I, which will be our 
main concern here. 

M [ X I  /Mmax 

Figure 25. M(x) normalized to amplitude 1 for varying A's: Plots are progressing 
from A + 0 (= the approximation sinx) over A = 0.2,0.4,0.6,0.8 to A + 1. 



Having approximated M(x) with M-sinx, we now return to M(h) which has 
become 

(2.37) 

Unfortunately, there is still no simple analytic expression for the integrals if eq (2.37) 
is used instead of M(h'). To gain some insight into the factors determining the shape of 
the integrals b,, and we further simplify this expression by replacing the inside sine 
with a linear function that yields the same number of cycles of M in a satellite pass. In 
other words, we approximate M (h') by a sine function with a constant frequency 
equal to the average frequency of R (h') . As already deduced above, the average 
periodis - . -  ' ' and thus the average angular Frequency is 

2d 2 
8d R = L. (2.38) 
h 

This results in 

(2.39) m ( h )  = MmaxsinQh' = asinA.sin(Xh'). 8d 

2 Note that with this step we just replaced sinh' by x - h' , its average slope in the interval 
[0,71/2] to which h' is confined. 

The integrals containing Ff (h') instead of M(h') can easily be evaluated. The 
solutions in the limit R >> 1 are: 

h,., 
- Mmax = I MmaXsinRh' e (  cosh') 2dh' + -[ 1 - cosRhmaXcos2hmax] (2.40) 
*oxy R 

0 

hm, 

Mmax 1 
E I M,,,sinRh' msh'sinhdh' + -- - cosRhmaxsin2hmax . (2.41) 

n 2  
0 

General features of the integrals apparent from eqs (2.40) and (2.41) are: 
They oscillate with frequency R. 
Their maximum amplitude is proportional to M,,,,JR. 
The oscillation amplitudes vary as cos2h- and sin2h,,,, for Ioxy and G, respec- 
tively. 

Comparing these integrals with the exact integrals of figure 2.4 we find: 

- 
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Using the values of A = 0.5, d = 1 m, and L = 20 cm, the maximum amplitudes of 
cy and f;;i are 0.013 and 0.0065. Thus, the approximation somewhat overesti- 
mates the maximum value for by and underestimates it for I&. This is due to the 
fact that the region of faster-than-average oscillations (small h’) is weighted by 
cos%‘= 1 in IQr,,, i.e., relatively overweighted, but by sinh’ cosh’ G h’ in b, i.e., rela- 
tively underweighted. 
There are significant deviations in the shapes of the oscillation envelopes, particu- 
larly obvious in b. This integral differs much more strongly because the region 
near h’ = W0, which deviates most strongly from the average frequency (oscillation 
frequency + 0), receives the most weight. 

We now argue that these general results, and especially the envelope shapes of the 
exact integrals, are not dependent on the particular values of A and d/h: 

A will only influence the shape of the oscillation and determine the scale of the ver- 
tical axis proportional to M,, = usinA. 

dA = R is proportional to the number of cycles on the horizontal axis. Integrals of 
oscillating functions scale with the inverse frequency of the integrand. Thus, the 
vertical scale of the exact integrals will be proportional to Vd. 

We may thus construct approximations to by and Ioz by simulating the features as 
apparent in figure 2.4. Starting from eqs (2.40) and (2.41) we make the following “cor- 
rec tion s”: 

(1) Scale the amplitudes to the correct values of by and b. These are found numeri- 
cally to be both approximately 0.016 for the values A = O S ,  d = 1 m, and 
h = 20 cm used in figure 2.4. 

(2) Observe from figure 2.4. that the envelope shapes of the exact integrals are very 
close to cosh,,,, and respectively. 

(3) Include the frequency dependence; as the integrals display the same frequency 
dependence as their integrand M(h’), we can simply replace Qh by the original 
argument, sin h . 

We thus arrive at our final (empirical) approximations to by and b: 

8d 1 - cosh,,,cos 
- 

(2.42) 

(2.43) 

24 



Plots of these approximations together with the exact integrals are shown in 
figure 2.6. The agreement is quite surprising; one might presume that the empirically 
constructed approximations could be obtained through more rigorous mathematical 
reasoning as well. We will not follow that path but accept that the lack of mathematical 
scrutiny requires us to be critical of the approximations. Clearly, their quality will 
decline for small d (we assumed R >> 1 in eqs (2.40) and (2.41)). The real bias in the 
limit d = 0 obviously has to vanish, while according to eqs (2.42) and (2.43) it 
becomes infinite. Intuitively, it is clear that these expressions will only be meaningful 
as long as the integrals perform at least one full cycle between 0 and 90'. This is the 
case for 2dfk = 1, i.e., d = U2. In particular, the integrals will start to grow slower than 
= l/d when d is on the order of or smaller than one wavelength; finally they vanish for 
very small d. We will take the approximations as valid in that they give a good esti- 
mate for the amplitude and frequency of the oscillations for a given h,,,- and d bigger 
than 1 m (the value chosen in figure 2.6); for smaller d they overestimate the ampli- 
tudes. This will be sufficient for our purpose. 

Summarizing, we state that the elevation integrals by and I,, oscillate in h,,,- with 
an average period of 2x/R = 45"Ud under (approximately) cosine and sine envelopes, 
respectively. The maximum amplitude reached is about 0.077 M,,,&d for both inte- 
grals. IhY is always positive while I, oscillates about zero. 

2.4 Generalization to Dual Frequency Observations 

The treatment so far has been restricted to a single frequency while most experi- 
ments today (and the "EDM" experiment) use dual frequency observations of the L1 
and L2 carriers to correct for the ionospheric delay. It is clear that the ionosphere free 
linear combination L3 will be contaminated by multipath from both L1 and L2 and 
thus be noisier than the single frequency signals. This now has to be quantified. 

The ionosphere corrected phase in cycles of L1 is defined as (e.g., [9]) 

where 4, and @2 are both in cycles of their respective wavelengths and 

(2.45) 
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Figure 2.6.- Exact integrals (black lines) and approximated integrals (gray lines): 
(a) by and Ioxy, (b) b, and Ioz as functions of their upper integration limit h,,,,. Rel- 
ative multipath amplitude is A = 0.5, perpendicular distance to reflector d = 1 m, and 
wavelength X = 20 cm. 



It follows that the multipath error phase in L3 is 

M, and M, being defined by eq (2.6) with X equal to X, and b, respectively. Assuming 
equal relative amplitudes Al = A, = A of the reflected signals of L1 and L2 and using 
approximation eq (2.37) this becomes 

M 3  (h') = Mmax[2.545sin( 4 e ~ i n h ' ) -  1.984sin (2.47) 

Let 

yi = 4Asinh', A ~ I  = y ~ ,  -w2, C, e 2.545, C, = 1.984, 
Xi 

then eq (2.47) can be expressed as 

where 

11 C, sin\yl + C,siny, 
M3 = Dsin[atan( c, COSyI, + c,cosyI, 

D = Mma, , , /C~+C~--2ClC2cosA~.  

(2.48) 

(2.49) 

This means that the maximum amplitude of M3 is 

= Mmrx(C1 + C,) = usinA -4.529 (2.50) Dmax 

as long as Ay reaches the value tt. For a satellite that passes h' = 90" this is the case if 
41td(lhl - l&) > tt, i.e., d > 23 cm which is usually satisfied in practice. In other 
words, the multipath noise of the L3 linear combination is in general about 4.5 times 
as large as for the single frequencies unless the receiver is mounted very close to the 
ground and no other reflectors are present. 

We have to examine now how this translates into the position bias. If L3 is used as 
observable, then the simple phase model eq (2.7) becomes 

(2.5 1) 

It follows that the corresponding formula for the position bias is obtained by simply 
replacing M with M3 and X with X, in eq (2.28): 

6r = -Al - B - M330cosh dh da. I 
multi 

(2.52) 
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Hence, the problem only amounts to calculating differences of integrals that have been 
solved already. Any integral I3 involving M3 in the integrand is calculated from the 
respective integrals I1 and I2 with MI and M, as I3 = CII1 - C212: 

(2.54) 

1 ~ i n h , , ~ c o s ~ ~  k2 c2 cosyl + -- 
x1 a1 

sin h,,, (2.545 cosWl - 2 . 5 0 6 ~ 0 ~ ~ ~ )  . Mmax'l 
8d 3 -0.61 

Plots of i30xy and i30, are shown in figure 2.7 together with the exact (numen- 
cally integrated) integrals I3&, and 130, for the usual parameters of A=OS and 
d = 1 m. The envelopes, simply cosh,,,, and sinh,,,, for single wavelengths, are now 
modified through the interference of the two wavelengths that is dependent on d. This 
modification is calculated in the same way as the amplitude of M3 above in eq (2.49): 

where the amplitude 

E = */2.5452 + 2.5M2 - 2 2.545 - 2.506C0SA~ 

(2.56) 
2 = 4 2  - 2.545 2.506 . 4-y = 5.05sin 

and is the phase of the fast oscillations with an average period on the order of 

The periodicity of the amplitude variation, on the other hand, is on the order of 

(2.57) 

(2.58) 
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Figure 2.7. -Exact integrals (black lines) and approximated integrals (gray lines): 
(a) I3& and 130xy, (b) I3& and 130, as functions of their upper integration limit h,,,=. 
D a s h d  lines are the amplitude envelopes calculated from the approximations. Rela- 
tive multipath amplitude is A = 0.5, perpendicular distance to reflector d = 1 m, and 
wavelengths XI = 19 cm and & = 24 cm. 
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The resulting envelopes, also shown in figure 2.7, are: 

with 

= 2nd( - ')sin h,,, s 6.9 . d [ m] sin h,,, . 
2 '2 

(2.61) 

Comparing these results with the ones of the preceding section for single fre- 
quency observations (3, = XI)  we find: 

The elevation integrals 13h,, and 13& oscillate in with about the same period as 
the corresponding single-frequency integrals, Le., 10°/d[m]. 
The oscillation envelopes are still cosine and sine functions, mpectively, that now 
undergo sinusoidal variations with an average period of 80°/d[m]. 
The maximum amplitude reached is about five times as big as in the single fre- 
quency case, namely 3.1 M,,&/8d = O.O74M,,,,/d. 
Both integrals oscillate about zero. 
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CHAPTER 3 

CALCULATIONS FOR SIMPLE REFLECTOR GEOMETRIES 

3.1 Outline of the Strategy 

With the tools developed in the previous chapter we are now able to calculate the 
position bias due to multipath for simple reflector-receiver geometries. The general 
strategy, whenever applicable, will be: 

(1) Define the reflector geometry in a coordinate system with vertical z-axis (the 
unprimed system or “u-system”). We will generally define the y-axis parallel to 
the reflector surface and assume a reflector horizontally symmetrical with respect 
to the x-axis, which reduces the problem to two dimensions. 

(2) Define a suitable coordinate system centered on the image receiver R with the z- 
axis in the direction of the normal vector of the reflector surface (the primed sys- 
tem or “p-system”) to reduce the calculation to the case of azimuthal symmetry. 

(3) Determine the rotation matrix T that transforms from the p- to the u-system. 

(4) Parameterize the multipath region (defined in section 2.2.2) in terms of elevation 
angle h’ and azimuth a’ of the p-system. 

( 5 )  The position bias in the u-system is then calculated according to eq (2.32) as 

where the index “1/3” stands for either single frequency (Ll) observations or dual 
frequency (L3) observations. 

(6) The values of the elevation integrals 1(hmh, h,,,=) occurring in eq (3.1) are in prin- 
ciple calculated from the approximations developed in the last chapter as 

I - 
1 (hn,in’ h,,,) Io WmaJ - Io O m i J  * (3.2) 
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These integrals oscillate in h,,,,,, and h,,,= with frequencies (and in the L3-case also 
amplitude variations) depending on d as discussed in chapter 2. We are neither 
interested in the position bias for narrowly defined values of d or hu, nor 
would it be justified on the basis of the approximations made to attempt such a 
calculation. Instead, we will generally only estimate an upper limit to the magni- 
tude of an elevation integral as 

-max -max 
where Io 
corresponding 
envelope variations in the L3-case). These oscillation amplitudes a~ 

(hmin) 2 0 and IO (hmax) 2 0 are the oscillation amplitudes of the 
integral for the particular values of h,,,,,, and h,,,= (ignoring the 

- for single frequency observations (deduced from eqs (2.42) and (2.43)): 

sin hmax sinh,,, E 0.015 - - %ax - max ‘1 Mmax 
Iloz (hmax) E 0.6 8d d 

- for dual frequency observations (deduced from eqs (2.59) to (2.60)): 

The sign of the bias cannot be inferred in these estimates because the integrals 
oscillate about zero (with the only exception of Il,, which is always positive). We 
keep in mind that the maximum value Io (hmin) + $” (hmax) may be 
reached whenever h,,,= and h,,,h are more than a quarter cycle of the oscillations 
apart, i.e., 

-max 

This may as well be viewed as a condition for d. In the L3 case the integrals do 
not oscillate at their highest values unless also the first maximum of the amplitude 
variations is reached (compare figure 2.7) which requires 
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hmin - d [ m ]  2 20'. (3.9) 

Note that the integrals do not grow any further for decreasing d if eqs (3.8) and 
(3.9) are not satisfied and in fact vanish for very small d. The highest possible val- 
ues are thus approximately reached for d =.'/Ah and d r20°/h,,,, for the L1- and 
L3case. respectively. Remember, however, that the calculations axe no longer 
useful if d becomes comparable to a wavelength, Le., about 20 cm. 
In this chapter M (without underscore) shall be in units of cycles. All definitions 

and calculations of integrals from the last chapter will remain valid by simply express- 
ing &= = minA in units of cycles, too. This means that the maximum value M,, can 
assume is now 1/4. Whenever unitless lengths occur in equations they are understood 
as numbers in meters. 

3.2 Multipath from Flat Ground 

3.2.1 Full Azimuthal Symmetry 

Consider the ideal receiver site; a perfectly flat ground and no objects anywhere 
nearby. Even in this case there exists multipath from ground reflections that reach the 
antenna phase center from the backplane. The geometry is elementary; d is the antenna 
height above the ground. The normal vector of the reflector plane (the ground) is verti- 
cal, thus the u- and p- coordinate systems are identical. Moreover, there are reflections 
for any satellite position within the observation region; thus the multipath region is 
identical to the observation region. Consequently, the position bias is calculated as 

2n W0 

COS h' * dh' da' (3.10) 

where h,,,,,, is the minimum satellite elevation included in the adjustment, typically 20'. 
As expected due to the azimuthal symmetry of the multipath region, there is no hori- 
zontal bias; the azimuthal integral vanishes for Sx and Sy. The vertical bias for single 
frequency observations is 
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For dual frequency observations the bias may be five times as large: 

(3.12) 

3.2.2 Disturbed Symmetry 

The nonexistence of horizontal bias in the preceding section is due to the azi- 
muthal symmetry of the multipath region; the effects of multipath from all sides cancel 
each other. Consider now the effect if this symmetry is disturbed because multipath in 
a particular region is eliminated, e.g., by some obstructing object or by decreased 
ground reflectivity or simply “missing ground” due to a nearby cliff. The geometry is 
illustrated in figurt 3.1. 

The vertical bias calculated in the preceding section is not expected to change 
much due to the region of missing multipath. However, a horizontal bias is now in- 
duced. Instead of integrating over the multipath region we can as well integrate over 

Figure 3.1. Asymmetrical multipath region for flat ground as reflector. 
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the region of missing multipath knowing that the integral over both together vanishes. 

Let us assume that this region is horizontally symmetrical with respect to the x-axis, 
has a maximum angular height h,,,= at a = 0, and a maximum azimuthal extent from 
+a,,,= to -a,,,= (a,,,= 5 x/2) as seen from the image receiver R .  While the integration 
limits of the elevation angle are, in general, functions of azimuth depending on the 
exact shape of the region of missing multipath, we can obtain an upper limit to the bias 
by separating the elevation and azimuthal integrals and integrating each over the max- 
imum extent of the region: 

h,,, (a  = 0 )  

M (h') cos2 h'( dhdal I M (h') cos h'dh 
sin a 

hmin (a  = 0 )  

'max I (?'?) da . (3.13) 

-amax 

This inequality has to be understood in an upper-limit sense, Le., the elevation integral 
on the right hand side really should be thought of as its oscillation amplitude as esti- 
mated by the method described in section 3.1. We thus assign the elevation integral its 
maximum value for its limits at a = 0 throughout all the azimuthal integration. In most 
practical situations the elevation integral will go through several maxima and minima 
as its limits as functions of azimuth span an interval of several times 2"/d. When 
applying these calculations to the practice, it ought to be kept in mind that eq (3.13) 
may be quite an overestimate. 

The choice of symmetry about the x-axis causes the integral over sina and thus the 
bias in the y-direction to vanish. The bias along the x-axis is for L1 observations 

Mmax . = 6 mme-. sinamax (cash,,, + coshmi,) . 
d 

The result for dual frequency observations is five times as big: 

sinamax (cash,,, + coshmi,) . 18x31 I 3Omme-e Mmax 
d 

3.3 Multipath from Nearby Objects 

(3.14) 

(3.15) 

Multipath from nearby objects is in practice potentially more serious than ground 
multipath because it cannot be reduced by antenna design or absorbing material; the 
reflected signals may be received at the same elevation angles as the direct signals. Of 
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course, nearby objects can often be avoided; the ground cannot. For our purpose, the 
only fundamental differences between nearby objects and the ground are the facts that 
objects are of limited extent and arbitrary position with respect to the receiver. The 
geometry displayed in figure 3.2 will be applicable to many cases in practice. The y- 
axis is chosen parallel to the reflector surface and the reflector is horizontally symmet- 
rical with respect to the x-axis, giving a zero bias in y-direction. The multipath region 
is identical to the region obstructed by the reflector as seen from the image receiver R ,  
where we assume for the moment that this region lies completely within the observa- 
tion region. 

First we need to express the limits of the multipath region in the primed system in 
terms of known variables. In the x-z-plane (a = a' = 0)  we deduce from the figure that 

htmin + h,,, = 01. (3.16) 

Consequently the limits in the primed system are 

h',in = 01 - h,,, 

and 
Wmax - - hlmin +Ah = 01- hmax + Ah 

(3.17) 

(3.18) 

where we do not allow cases that yield h',,,, 2 90". Again, these limits are really func- 
tions of azimuth a' depending on the exact shape of the reflector. We assume here that 

hm,: 

Ah: 

maximum angular height 
of reflector in the 
unprimed system as seen 
from receiver R 
vertical angular extent of 
reflector as Seen from 
receivers R and R' 
minimum angular height 
of reflector in the primed 
system as seen from 
image receivcer R .  

01190": reflector tilt with 

Figure 3.2. Multipath from a nearby planar reflector parallel to the y-axis, horizon- 
tally symmetrical with respect to the x-axis, and at an angle a from the horizon. 
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we are dealing with objects of rather limited azimuthal extent fatmu and obtain an 
estimate of the integrals over the multipath region by separating the elevation and azi- 
muthal parts in much the same way as eq (3.13): 

lmtlx1 i I I M, (h') cos*h'cosa'dh'da' 
multi 

= I I M,(h)cos2h'dh' cosa'da I 

(3.19) M m a x  I 2a',,, - 0.015- e2cos 
d 

Im'1zI = liti M ( h' ) cos h' sin h'd h'da' 

Ih",,(a'= 0 )  ''mar 

I da 
= I M,(h')cosh'sinh'dh' 

(3.20) Mmax  S 2aImax - 0.015- - 2sin d 

The transformation matrix from the primed system to the unprimed system is: 

cosa 0 -sina 

s ina 0 cosa 
T;[. 1 0 1  (3.21) 

With this we can calculate upper limits to the single-frequency bias in the x- and z- 

directions: 
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Mmax Ah 
2 cos- * = h1 -4a'  - 0.015- 

mrx d 

- [ cosacos( a - hmax + a - h,,, + g)] 2 

a'maxMmax cos-cos( Ah h m a X - F ) ,  
d 2 = 11". 

16z11 5 h, 0.5 ()m', ,)sina + Im'ldcosa) 

Mmax Ah 
2 cos- = h, - 2a' -0.015- 

d mrx 

- [sinacos( a - h,,, + a - h,,, + " )] 2 

2a - h,,, + e) 
d 2 .  

= 6". 

(3.22) 

(3.23) 

For big angles a, i.e., near vertical reflector surfaces, the above parametrization is 
not valid as parts or even the whole of the potential multipath region may lie outside 
the observation region. Of particular interest in practice is the case of a vertical reflec- 
tor as shown in figure 3.3. The total vertical angular extent of the reflector does not 

bax: maximum angular height of reflec- 
tor in the unprimed system as seen 
from receiver R 

bin: minimum satellite elevation in 
observation region 

are the 
multipath region iri the primed . system. \ 

Figure 3.3. Multipath from a vertical reflector. The multipath region is determined 
by the angular height of the reflector h,,.,= and the minimum satellite elevation 
included in the fit hmh. 
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matter now, but only the extent above the minimum satellite elevation. Hence, vertical 
reflectors can in principal be rendered harmless by choosing an elevation cutoff h,,,,,, 
higher than the angular elevation h- of the reflector. 

The integration limits in the primed system are now h'-=WO-h,,,, and 
hqma = 90' - h-. Thus, in analogy to eqs (3.19) and (3.20): 

Im',,l 2 2sina',,, [ilfxy[ 90'- h,,,) + ilf:;[ 90'- hmin)] 

Mmax s 2sinalmaX q0.015- - ( sinhmax + sinhmin) , 
d (3.24) 

Im'lzI * 2a'max [ilrzax[ 90'- h max + ifax[ 90'- hmin)] 

5; 2a',,, - 0.015- Mmax  . (cash,,, + coshmin) . (3.25) d 

The vertical bias in the p-system is the horizontal bias in the u-system and vice versa: 

M m a x  
d 1&,1 = Ll . lmtlx1 S 6 mm - - sinatma, (sinh,,, + sinhmin) . (3.27) 

Note the analogy between e q s  (3.26) and (3.14) where the bias is caused by a region of 
missing multipath of the same extent as the multipath region in this calculation. The 
corresponding estimates for dual frequency observations are again obtained by multi- 
plying all results by a factor of five. 

3.4 Multipath from Tilted Ground 

As demonstrated in section 3.2, position bias due to multipath arises as a conse- 
quence of asymmetry. A relatively small disturbance of vertical angular extent 
Ah = 2*/d can cause the full effect. Since a perfectly flat ground is rather the exception 
than the rule for a receiver site, it is of interest to examine how big a horizontal bias 
can be intraduced by a small ground tilt. Figure 2.4 illustrates the situation. The multi- 
path region is identical to the observation region as long as the tilt is smaller than the 
minimum satellite elevation, which we will assume here. A horizontal bias is intro- 
duced by the ground tilt for two reasons: the vertical bias in the primed system pro- 
duces a horizontal bias in the unprimed system as 6x = Gz'sina, and the horizontal bias 
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Figure 3.4. Multipath from the ground tilted at an angle a from the horizon. The 
multipath region is identical to the observation region. 

in the primed system is non-zero because of the asymmetry of the multipath region in 
that system. If we assume that 6z' is of the same order as that for the flat ground calcu- 
lated in section 3.2, then 6x due to it becomes significant only for tilt angles greater 
than, say 20'. We suspect that the second reason might yield an appreciable horizontal 
bias for much smaller ground tilts, which shall be estimated now. 

We have to evaluate the integral over the multipath region 

mllx = I M, (h') cos2hcosa'dh'da'. 
multi 

(3.28) 

The method of decoupling the elevation and azimuthal integrals eq (3.13) is of no use 
in this case as the azimuthal extent of the multipath region is not limited, in fact, 
applying it would give zero as the result. We have to actually parameterize the depen- 
dencies of the limits on each other: 

mtlx = Jl M, (h') cos2h'dh' cosa'da'. I (3.29) 

Inserting the approximated solution of the elevation integral, eq (2.42), we are con- 
fronted with 
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2% 

Coshtmin (a') cos( *sinhtmin a') cosa'da'. (3.30) 
m'lx 8d x1 0 

0 

It is easy to derive that, for small tilts a, the proper function of the minimum satellite 
elevation as a function of azimuth in the primed system is 

Wmin (a') hmin - acosa' . (3.31) 

Rather than attempting to solve eq (3.30), we will now make some crude appmxima- 
tions and intuitive arguments that let us estimate an upper limit for it: 

h'- is small, so cash'- E 1 and sinh'- W- 
linearize eq (3.31) in a' E [O,n]: 

hlmin (a') 3 hmin +..'(a'-;) 
IC 

the integral in eq (3.30) 

2Icos re( hmin + a. 
0 

with 

and 

thus becomes 

(3.32) 

II 

?(a' - ;))I cosa'da' E 2 cos (D + Fa') cosa'da' (3.33) 
IL I 

0 

(3.34) 

(3.35) 

Expression (3.33) reaches its maximum value of IC when D is a multiple of ~ I C  and 
F = 1. With the angles in degrees and d in m, the first condition translates to 

0.18d ( hmin - a) = integer (3.36) 

which is satisfied e g ,  for d = 1 m and h,,,,,, = 20' by a = 14.4', 8.9', 3.3'. The 
second condition is 

1.4' as- 
d *  (3.37) 

which is in fact on the order expected from the preceding sections. 
Expressed in words, we have just defined conditions under which the elevation 

integral of figure 2.6a goes from a maximum to the next minimum while the azimuth 
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in the primed system goes from 0 to 1800. The horizontal bias is maximized when 
these conditions are satisfied. We have also found that the conditions can be satisfied 
for reasonable values of d, h,,,,,,, and a. 

Note that ground tilts smaller as well as larger than 1.4O/d create a smaller bias. 
The exact solution for integral eq (3.33) is 

2 cos (D +Fa') cosa'da' = - 4F - cosFE 2 - sin(D + F s )  I 1 -F2 
(3.38) 

0 

4 which can be constrained to fist order as 5 4F for small F = 0.73ad cc 1 and S - F 
for large F >> 1. Both limits yield the value 4 for F = 1 instead of the exact value of x. 

These considerations result in the following upper estimates for the horizontal 
bias ax,: 

maximum bias at a = 1.4O/d: 

M m a x  M m a x  16x11 = 18x'11 = h1 - mllx 5 h, 0.015-z E 9 mm- 
d d 

for a c 1.4O/d (a in degrees): 

for a> 1.4O/d (a in degrees): 

M m a x  4 M m a x  16x11 5 h, 0.015-- E 16 mm - - 
d 0.73ad a d 2  ' 

(3.39) 

(3.41) 

For dual frequency observations the bias may be five times as large whenever 
d 2 20°/hhn E 1 m. This limits the absolute maximum to about 10 mm. Also remem- 
ber that the approximations were obtained under the assumption of a small ground tilt. 
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CHAPTER 4 

APPLICATION OF THE MODEL 

4.1 Limita ions of he Applicability 

Before applying the calculations of the previous chapter to the real world and spe- 
cifically to the “EDM” campaign, it needs to be discussed how much the theoretical 
results are distorted by real world effects disregarded in the model. The fact that the 
object of this study, the position bias, shows a rather erratic behavior even in theory (it 
oscillates) already forces us to confine quantitative statements to upper limit estimates. 
Therefore we are now mainly concerned with the possibility that these estimates may 
be too small in real situations. 

Let us recall the essential formulae derived for the model in Chapter 2: 

6r = -1, [ S,cosh dh - d a ) ’  . M9,cosh. dh - da. (2.21) 
obs multi 

From this we calculated the position bias in Chapter 3 and obtained results of the form 

where C is a factor dependent on geometry whose components are smaller than 4x for 
single frequency observations. In the L3-case this result is multiplied by about five. 
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4.1.1 Non-uniform Satellite Distribution 

If we assume for the moment that eq (2.6) gives the real error phase, the biggest 
shortcoming of the model is the assumption of a uniform satellite distribution in the 
derivation of eq (2.21). The actual satellite distribution is dependent only on the 
receiver site and repeats daily. The satellite elevation angles and azimuths as functions 
of time for the rfcr station are shown in figure 4.1. While these plots are not quite the 
ideal means to examine the observation density in elevation and azimuth space, they 
do reveal the most obvious deviations from a uniform distribution, that the density 
decreases with increasing elevation angle; this is expected as a satellite zenith pass is a 
rare event. The azimuth plot displays two types of curves: those similar to inverse tan- 
gents corresponding to east-west satellite passes, and those similar to inverse tangents 
of the inverse argument Corresponding to north-south passes. The predominance of 
north-south passes over North America is well known to be responsible for the better 
precision in the north-south direction often observed in GPS experiments if ambigu- 
ities are not resolved (e.g., [ 141). Our interest here is not in the characteristics of satel- 
lite passes but only in the overall observation density throughout the session. 
Essentially, we imagine a horizontal grid across the angle plots and require an equal 
amount of data points in each row. 

Formally, the non-uniformity of the satellite distribution would be introduced into 
the calculations simply as a non-constant density function c(h, a) of azimuth and ele- 
vation in the integrals of eq (2.21). The real density is different from the assumed con- 
stant value in two ways: 

(1) There will be large scale variations corresponding to a systematic asymmetry 
depending on the receiver site. The most pronounced large-scale structure of c for 
almost any site is the smaller number of high elevation observations. Because 
both integrands in eq (2.21) are weighted by cosh, any variability of c in the 
region h E 90" has little effect on the result. 

To get an idea of the size of the influence, consider the extreme case of a den- 
sity function that is unity for h I 60° and zero for h > 60°. The effect on the first 
integral (the matrix B) is rather small; it becomes the mamx 
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Figure 4.1. Satellite elevations (upper plot) and azimuths (lower plot) in degrees as 
functions of time for station rfcr. One epoch on the time axis corresponds to 15 s. 
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which differs from eq (2.28) only in the zz-component by about 60 percent. The 
second integral is only affected in cases where the multipath region extends above 
h = 60". Of course, any azimuthal non-homogeneity results in non-zero off-diago- 
nal elements that lead, for example, to a small horizontal bias even in the case of a 
perfectly flat ground without obstacles. 

In practice, observation times are sufficiently long to sample all directions of 
the sky. The large scale asymmetry is thus hardly of concern to us; it may influ- 
ence the geometry factor G somewhat but will not affect the order of magnitude 
of our estimates given by M,,,Jd. 

The density, of course, also fluctuates strongly on the small scale as the satellite 
orbits are discrete lines in (h, a)-space. The condition for the applicability of the 
model is that these fluctuations can be regarded as random for the particular 
receiver-reflector geometry. We could construct an extreme case of non-random- 
ness where all observations yield the same multipath error phase so that the bias 
adds up instead of decreasing by averaging. This happens, for example, when all 
observations have an equal elevation h' above the reflector plane. 

Imagine the flat ground as a reflector and satellites circling the receiver at a 
constant elevation h causing the (constant) error phase M. Then eq (2.21) 
becomes 

(obs multi 

and thus 

hl M 6z = -h, (2xsin2h)-l - (2xsinh) = - 
sin h (4.4) 

which is independent of the distance to the reflector and could become quite big. 
While this hypothetical case might bear no resemblance with any real situation, 
the problem of non-randomness is not completely irrelevant. A satellite pass par- 
allel to a long vertical reflector may cause an almost constant or very slowly 
changing error phase. If observation times are short, this particular set of observa- 
tions may receive much more weight than would be predicted by our model, 
resulting in a larger bias. Long observation times will obviously decrease such 
systematic effects, but once present never completely eliminate them as no addi- 
tional improvement is obtained if the observations span more than one day. It is 
beyond the scope of this work to quantify the influence of non-random satellite 
distributions on the position bias. Since general statements are hard to obtain, the 
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easiest way for such an evaluation would probably be a simulation using actual 
satellite orbit data and calculating the bias from eq (2.19). Because of the neces- 
sity of very particular geometry, situations as the one described above should be 
very rare. Intuitively, one would assume that the satellite distribution is suffi- 
ciently random for the model to be valid if observations include more than, say, 10 
satellites, Le., for observation times of several hours. 

4.1.2 Other Unmodelled Effects 

Other unmodelled effects that are of concern to us refer exclusively to the error 
phase, M. In chapter 2 we made the following assumptions: 

Single Reflector. Multiple reflections of the same signal would occur mostly from 
the ground and a nearby object, whereas simultaneous reflections from two objects 
would be rare due to their limited extent. Thus the two reflected signals would enter 
the antenna from very different elevation angles (positive from the object, negative 
from the ground). Because of the gain pattern of the antenna, it is likely that the ampli- 
tudes differ by an order of magnitude or more, since reflection from the object pre- 
vails. It is thus a good approximation for most practical cases to calculate the error 
phase in a region of multiple reflections from the strongest reflection alone. 

No Phase Change at Reflector. The phase difference between the direct and the 
multipath signal was set equal to the pathlength difference divided by the wavelength. 
Here we disregarded a phase change of K occumng at a conducting surface. This fac- 
tor is inconsequential for the model results that employ the sinusoidal approximation 
eq (2.37). It will only reverse the sign of the multipath phase. 

Planar Reflector. Many reflectors in practice actually are close to plane surfaces 
(trucks, ground, water, erc.). The effect of deviations from a perfect plane depend on 
their scale: roughness on a scale much smaller than a wavelength can be disregarded; 
roughness on the order of a wavelength will cause loss of the coherency of the 
reflected signal, i.e., the error phase will average to zero. The only case that would 
affect the model results would be a reflector that is bent on a scale larger than a wave- 
length. The whole derivation of the error phase is not applicable then, as the image 
receiver is not stationary and the calculated oscillation frequency becomes incorrect. 
The model will still be a good approximation for slight curvature. 

Constant Reflection Amplitude. In reality, A varies for several reasons, most 
notably for the antenna gain pattern. Most modem antennas designed for high accu- 
racy applications (among them the one used in the “EDM” experiment) feature a gain 
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drop between 10 and 20 dB from the zenith to the horizon, and down to 30 or even 40 
dB at the backplane zenith (e.g., [15]). The amplitude of the reflected signal before 
entering the antenna varies as a function of incidence on the reflector (and position of 
the reflection point). Most importantly, reflections only occur if h’ is smaller than the 
Brewster angle 0 = usin-, n being the index of refraction of the reflecting material. 

The variability of the amplitude could be included in the model simply as a func- 
tion of elevation and azimuth in the second integral of eq (2.21), just as the observa- 
tion density in the previous section. In practice it would vary slowly, Le., slower than 
the e m r  phase itself. Therefore it would only influence the shape of the oscillation 
envelope of this integral and thus the geometry factor G in eq (4.1). The scale of the 
bias, M,,,,/d, remains correct, and we can estimate an upper limit by assuming the 
maximum amplitude occurring for the particular reflector. 

1 
n 

4.2 Estimating the Amplitudes 

Without question, the most important variables determining the position bias are 
the distance to the reflector and the maximum amplitude of the error phase. While the 
former is readily obtained once a reflector is identified, the latter is very difficult to 
model. Even if the variability as discussed in the previous section is disregarded, the 
calculation of the amplitude requires knowledge of the antenna gain pattern, the index 
of refraction, and the conductivity of the reflecting material. Needless to say, any 
attempt to estimate the amplitudes is subject to substantial error. As our goal here will 
be an upper estimate of the bias for a particular station in a particular experiment, it is 
probably preferable (and certainly easier) to first consult the data itself. 

The postfit residuals of the double differences contain the combined noise of both 
stations of a baseline. This includes in the L3 case orbit errors, tropospheric errors, 
clock terms, and multipath noise. We will in the following section focus on two sta- 
tions of the “EDM” experiment, nist and eril: the former because its position showed 
unexpectedly high scatter as discussed in the first chapter, the latter because it is by all 
standards an extreme multipath site as will be evident below. The tactics will be the 
following: we compare the L3 postfit double difference residuals of the baselines con- 
taining nist and eril and select for each of the two the baseline and day with the small- 
est noise. The amplitude of the multipath noise from any reflector must be smaller than 
the overall noise amplitude for the particular day and, because multipath repeats daily, 
on any of the days. The selected plots are shown in figure 4.2, namely nisteri2 and 
eri2eri1, both on the first day of the experiment. Eri2 is the station with the smallest 
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Figure 4.2. L3 postfit double difference residuals for the baselines nisteril (upper 
plot) and eri2eril (lower plot) at day 078 (the first day of the "EDM" experiment). 
One epoch on the time axis corresponds to 15 s. 
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multipath noise (the receiver is located in an open field). From the plots we conserva- 
tively estimate a maximum multipath noise amplitude smaller than 3 cm at nist (and 
eri2) and smaller than 6 cm at eril. The fact that the two Erie sites differ from each 
other only in their near environments also allows the conclusion that multipath at en1 
is the dominant noise source for the baseline eri2eri1. Since the amplitude of the error 
phase is about 4.5 
2.4) we infer that 

at nist: 

at eril: 

times as big for L3 observations as for Ll observations (see section 

3 cm M,,, II - z 0.035 cycles w A I 0.22 4.5x., 

cm = 0.07 cycles a A 5 0.44. Mmax - 

(4.5) 

At least the amplitude eq (4.6) must be quite an overestimate for reflections from 
the ground; the antenna gain pattern is such that the strongest ground signals (lowest 
elevation angle 20") are received at a sensitivity of less than -2OdB relative to the 
zenith while the gain for the corresponding direct signal is about 10 dB stronger. Even 
for a perfectly reflecting ground the relative strength of the reflected signal must thus 
be smaller than 0.3. We conclude that the high amplitude at eril is due to reflections 
from several of the nearby objects. Assuming identical ground properties at the sta- 
tions eril and eri2 we can reasonably choose eq (4.5) as upper limit for ground reflec- 
tions at eri 1. 

4.3 Position Bias at "nist" 

The environment of the nist site is drawn in figure 4.3. We consider the following 

Vertical Bias due to Ground Reflections. From eq (3.12) with IVl,,,= < 0.035 and 
causes for bias due to multipath:. 

d = 1.2 m we obtain: 

60 mm .0.035 - = 1.8 m m .  
l"31 1.2 (4.7) 

Horizontal Bias due to Ground Reflections Plus Asymmetry Induced by the 
Tree. The angular height of the tree as seen from the receiver is approximately 22", 
i.e., for a minimum satellite elevation of 20" the tree disturbs the symmetry of the mul- 
tipath region. The tree's azimuthal extent is about 25". Assuming that eq (3.15) derived 
for a flat ground approximately holds for the slight ground tilt, we thus infer 
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N 

Flatirons, 
Boulder 

ground drops toward 
east at -5' tilt 

Figure 4.3. Geometry at the receiver site nist. Antenna height of R was 1.2 m above 
ground. All numbers given in the sketch ~IE estimates to within about 10 percent. 

30 mm . - sin25'. 2c0s2Oo 0.7 m m .  
I"xsl I 1.2 (4.8) 

Horizontal Bias due to Tilted Ground. The ground tilt in the vicinity of the 
receiver is about 5". In this case a 4 x 1.4O/d, so eq (3.41) applies, yielding 

(4.9) 
0.035 

5 * 1.22 
16x31 I 5 - 16" - - = 0.4 mm. 

Horizontal Bias Induced by Reflections From the Flatirons. The Flatirons 
were initially suspected to be the main cause of bias. According to our model reflec- 
tions off them cannot be a problem; even if the rock surface could be regarded as a 
plane reflector (in reality it is rough on the order of a wavelength), the error phase 
oscillates so fast due to the large distance that it averages out. However, this leads to a 
different consideration; if the reflections from the Flatirons are much stronger than the 
ground reflections, then they dominate the multipath phase in the region in which both 
reflections are present simultaneously. Hence, multipath in this region averages out, 
which effectively amounts to a region of missing ground multipath causing horizontal 
bias according to section 3.2. 

We estimate the essential parameters of the Flatirons as seen from nist as follows: 
they are tilted at an angle of about a 5 45" from the horizontal, have a vertical angular 
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extent Ah lo", a maximum angular height h,,,== 20", and an azimuthal extent 
a,,,= 30'. Simple consideration of the geometry yields that the region of missing 
multipath (as seen from the receiver or image receiver below the ground) lies between 
80" and 90" elevation. Allowing for an error in these estimates by letting the center of 
this region be at a", we obtain from eq (3.15): 

boxes 114j 
1 3  

met. tower metal 

27 v 5 

flat ground w 
trailer 4.5 

'4" 

30 mm ' . sin30' - 2c0s60° 0.4 mm . 
18x31 1.2 

house 

4 

4.4 Position Bias at "eril" 

(4.10) 

The environment of the eril site is drawn in figure 4.3. Here we encounter two 
types of multipath, from one of the nearby (vertical) objects and from the ground. 

Multipath From Nearby Vertical Objects. We only have to consider objects 
with an angular height bigger than the minimum satellite elevation, Le., 20". Because 
of the receiver height of 1.5 m above the ground the only such objects are the meteoro- 
logical tower and the trailer just south of the receiver with angular heights of 85" and 
30°, respectively. The tower is neither a flat surface (but a frame of metal rods) nor 
close enough to cause significant bias. For the trailer, with approximate azimuthal 
extent in the primed system of 50" to the east and 80" to the west, eqs (3.26) and (3.27) 
yield 

Figure 4.4. Geometry at the receiver site eril. Numbers on arrows give the horizon- 
tal distance from the receiver in meters, numbers inside boxes give the height of 
objects above ground in meters. Antenna was mounted 1.5 m above ground. 
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+ sin800( sin20' + sin30') z 0.3 mm 
2 (4.11) 16z31 5 30 mm - - - 5 

Ooo7 ' 500 + "'( cos20° + cos30°) 0.9 mm . 18x31 < 30mm.-.-  
180' 

(4.12) 
2 

Hereby we slightly modified the equations to take into account the asymmetrical azi- 
muthal extent of the trailer. Also note that because of this asymmetry, eq (4.12) is not 
strictly a bias in the direction of the trailer. 

Multipath from the Ground. The vertical bias caused by ground reflections is 
similar in size as calculated above for nist (eq (4.7)), i.e., 1.8 mm, if we assume similar 
ground reflectivity. Horizontal bias is introduced by objects that obstruct the ground 
multipath region ("missing multipath"), i.e., objects with an angular height larger than 
20" as seen from the image receiver 1.5 m below the ground. As is easily recognized, 
all objects shown in figure 4.4 qualify; we will here only calculate the largest bias that 
can be caused by a single object. Recalling the corresponding eq (3.15), 

18x31 I 3 0 m m - - -  Mmax sina,,, (coshmax + coshmi,) , d 
we find that the potentially most harmful objects are those of large azimuthal extent 
and low angular height h,,, (but remember that h, - hmi, 2 2"/d is required for the 
full effect). The obvious candidate is again the long trailer to the south of the receiver 
with azimuthal extent (now in the unprimed system) of approximately 20" to the east 
and 70' to the west: 

+ sin700( cos30' + cos20') G 0.8 mm . (4.13) 2 18x31 I 3 0 m m . - .  1.5 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

In this work we estimate the bias on GPS position measurements caused by carrier 
signal multipath. While the effect is known to be severe for short observation times 
and kinematic GPS applications, it is expected to significantly decrease through aver- 
aging for observation times much longer than the period of multipath signatures. Typi- 
cal multipath periods are on the order of several minutes while high accuracy static 
GPS applications usually require observations of several hours to facilitate satisfactory 
ambiguity resolution. 

The GPS Experiment “EDM’’ is introduced in the first chapter. It comprised 
three days of observations on five receiver sites with inter-station distances between 
200 m and 47 km. While the purpose of this experiment did not include testing multi- 
path, concern over a possible multipath-induced bias arose after it was observed that 
site-specific length-independent error sources strongly affected at least one of the sta- 
tions. Some of the summarized results show an unsatisfactorily high scatter of the 
shortest baseline in comparison with the longer ones. The presence of multipath signa- 
tures in the data is demonstrated as well. 

A Mathematical Model of Carrier Multipath Bias is developed in Chapter 2. 
We first model the error phase due to multipath in terms of satellite-receiver-refleztor 
geometry. This multipath phase is smaller than a quarter of a cycle of the carrier wave- 
length and oscillates with the satellite elevation angle at a frequency proportional to 
the reflector distance and the inverse carrier wavelength. In a second step we invoke 
the method of least squares to calculate the position bias from an arbitrary set of obser- 
vations corrupted by multipath error. Assuming a uniform satellite distribution allows 
us to express the bias in terms of general geometrical parameters. The expression 
involves integrals of the error phase that cannot be solved analytically. We simplify in 
several steps: the transformation into a coordinate system in which the error phase is 
azimuthally symmetrical reduces the integrals to one dimension; comparison of 
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numerical solutions with a sinusoidal approximation and some mathematical reason- 
ing finally lead to simple formulae that simulate the most important features of the 
integrals. The model is then generalized to dual frequency observations that are nowa- 
days the standard in high accuracy applications of GPS. The main effect is a factor of 
about five enhancement of the maximum multipath phase amplitude. 

Not surprisingly, the bias is found to be roughly proportional to the reflection 
amplitude, A, and inversely proportional to the perpendicular distance, d, from the 
reflector. Somewhat less expected is the fact that the magnitude and even the direction 
of the bias are very sensitive to the exact angular extent of the region in which multi- 
path signals are received and to the distance from the reflector. The bias oscillates 
depending on the elevation angle above the reflector plane with a period on the order 
of 45"A/d, i.e., for carrier wavelengths of 20 cm about 9"/d[m]. This means, for exam- 
ple, that the bias sign reverses if the angular extent of the multipath region changes by 
5" under otherwise identical conditions. More importantly, it also implies that the bias 
is dependent on setup. In particular, a 10 percent change of the antenna height will 
reverse the sign of the bias due to ground reflections. This explains why multipath 
contributes to the day-to-day scatter when the setup and antenna height are varied 
daily as is common practice in many GPS experiments. This practice should therefore 
be recommended as it will allow multipath error to be represented in the repeatability 
rather than remaining a systematic error with unknown magnitude. 

Basic Receiver Environments are examined in Chapter 3 employing the model. 
We obtain upper limits to the expected multipath bias in terms of the reflection ampli- 
tude, perpendicular distance from the reflector, and one or more angles characteristic 
of the geometry. The general rule for any geometry is that multipath bias is a product 
of multipath and asymmetry. Uniform multipath from all directions would in theory 
not cause any bias. The concept of the image receiver at an equal distance behind the 
(planar) reflector proves very useful within this context. To examine whether a partic- 
ular environment might cause bias, all that needs be done is to identify reflectors and 
determine whether the multipath region as seen from the image receiver is asymmetri- 
cal. 

Multipath from the flat ground causes vertical bias because it is non-symmetrical 
in the vertical direction (no satellites are below the ground). The azimuthal symmetry 
(about a vertical axis), however, precludes horizontal bias. Any azimuthal asymmetry 
in the field of view of an image receiver, however, introduces horizontal bias. This 
asymmetry could be due to any object (not necessarily a reflecting one) that obstructs a 
small part of the observation region of the image receiver below the ground 
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(corresponding to ground reflections). A reflecting surface itself effectively acts as an 
obstruction for the image receiver behind it. Thus, a nearby reflector will cause 
horizontal bias unless it is completely outside the observation region of the image 
receiver. Finally, an antenna placed above tilted ground results in horizontal bias 
because the azimuthal symmetry of ground multipath is destroyed. Of concern hereby 
is only the portion of ground within the observation region of the image receiver, Le., 
the ground surrounding the antenna within a radius of d/tun20° = 2.7d for a satellite 
elevation cutoff of 20' and an antenna height d. A very small ground tilt of 1.4O/d, 
however, is sufficient for the maximum bias. Therefore, horizontal bias due to ground 
reflections can hardly be avoided despite careful site selection. 

The maximum bias is of the general form and order 

M m a x  

d [ml 
- G ,  i.e., 3 mm- - G L2Mmax 0.075 

for L, = 19cm. Here the maximum (single wavelength) error phase in cycles, 
M,,,= = usinA/2x, is smaller than 1/4, and G, which is dependent on geometry, is 
smaller than 47c: for single frequency observations and smaller than 2On for dual fre- 
quency observations. The formula is an overestimate if d is on the order of or smaller 
than a carrier wavelength. 

These results suggest two principal ways to decrease or eliminate multipath bias: 

Antenna positioning: Reflectors that could create bias must either be avoided or 
be distant enough to be harmless. While the ground cannot be avoided, we find 
that carrier multipath bias due to ground reflections is inversely proportional to 
the antenna height. This result appears to contradict recommendations by other 
authors to place the antenna as close to the ground as possible [1,15]. The 
argument for a very small antenna height is to yield a multipath error phase 
oscillating so slowly with the satellite elevation, that it remains well below the 
first maximum during a satellite pass. The first maximum, however, occurs at an 
elevation angle of approximately 2O/d, implying an antenna height smaller than 
about 2 cm to suppress it in a satellite zenith pass and well below that to actually 
reduce the bias. This can hardly be achieved in practice due to the physical 
dimensions of the antenna and its phase center location; one might have to place 
part of the antenna below the ground. We argue that a very small antenna height 
will likely reduce carrier multipath noise apparent in the postfit residuals, but only 
because the slowly varying error is absorbed by the estimated parameters and thus 
not visible in the adjustment residuals. This is precisely the result that is not 
desired. In contrast, a large antenna height will increase the multipath oscillation 
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frequency, preventing the error from being absorbed in the parameters for 

sufficiently long observation intervals. Thus the multipath signatures can be 
detected in the postfit residuals and the bias will be decreased by averaging over 
many multipath periods. 

The picture is completely different for pseudorange multipath since the fun- 
damental wavelength of the code modulations is 154 (P-code) or 1540 (UA-code) 
times bigger than the carrier wavelength. Thus, pseudorange multipath error can 
be reduced to a small part of a cycle by placing the antenna very close to the 
ground. This is an effective method for minimizing the resulting bias. Note that 
the work presented here is not applicable to pseudorange because its signal struc- 
ture and the methods to retrieve geometrical information from it are inherently 
different than those of the camer signal. 

(2) Minimizing the reflection amplitude: This is usually possible only for ground 
reflections. Methods tested include adding absorption material or a “choke ring” 
to the antenna to reduce the strength of the reflected signal. Experimental tests 
suggest that multipath rejection measures are most effective and practical if they 
are designed into the antenna itself [ 11. Most antennas in use for high precision 
measurements today feature a strongly reduced sensitivity in the backplane reduc- 
ing ground multipath effects. 
Application of the Model is the subject of Chapter 4. We discuss the assumption 

of uniform satellite distribution and unmodelled effects and conclude that the simple 
model is applicable to most practical situations in that it discloses the nature of multi- 
path error and yields an upper limit estimate of its magnitude. We examine in detail the 
two stations of the experiment “EDM” that are thought to be most affected by multi- 
path (nist and eril). The reflection amplitudes are estimated from the postfit residuals. 
The model yields horizontal biases smaller than 1 mm and vertical biases smaller than 
2 mm for all sources of multipath considered. We thus infer that even for these less 
than ideal receiver sites, multipath bias is essentially averaged out due to the long 
observation times. The remaining bias is comparable to setup errors and thus hardly 
reason for concern. In any case, it cannot account for the high length-independent scat- 
ter encountered in the experiment. 

Inasmuch as the conditions in the “EDM” experiment are typical for non-ideal 
receiver environments, we conclude that carrier multipath bias can be reduced to 
harmless levels by: (i) the use of antennas with a gain drop bigger than 10 dB between 
direct and backplane low-elevation signals (at 20°), (ii) an antenna height greater than 
about 1 m, (iii) no large reflective objects closer than about 5 m to the antenna, and 
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(iv) observation times of more than several hours. These points should be satisfied in a 
typical GPS campaign. The most critical issue may be the reflectivity of the ground. 
Note that a nearly perfectly reflecting ground would yield biases about four times as 
large as calculated here. In this extreme case the use of multipath suppressing devices 
external to the antenna would be appropriate. 

Potentially more harmful than multipath bias directly induced by a carrier phase 
error, as examined in this work, are the effects of multipath on the data quality. Strong 
multipath typically gives rise to problems during data preprocessing. Fast oscillations 
may be misinterpreted as cycle slips by the software. Multipath can also cause loss of 
lock and cycle slips during the observation. Finally, multipath becomes a major limita- 
tion to the accuracy of long baselines when ambiguity resolution is attempted with the 
help of pseudorange information. 
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